Honors & Awards

  • Gold medal in Bachelor of Pharmacy for securing highest percentage of marks, Indian Pharmaceutical Association (2004)
  • Graduate Student Travel Award, American Society for Pharmacology and Experimental Therapeutic (2009)
  • Young Investigator Award, Society for Experimental Biology and Medicine (SEBM) (2010)
  • The Graduate School Doctoral Dissertation Fellowship, North Dakota State University (2010-11)
  • The Graduate School Research Award in recognition of outstanding contributions made to research, North Dakota State University (2011)
  • Cetereo, Pracs Institute/James D. Carlson Graduate Research Award, North Dakota State University (2011)
  • Graduate Student Travel Award, American Society for Pharmacology and Experimental Therapeutic (2011)
  • Finalist ASPET best poster competition, American Society for Pharmacology and Experimental Therapeutic (2012)

Boards, Advisory Committees, Professional Organizations

  • Editorial Board Member, Journal of Natural Science, Biology and Medicine (2014 - Present)
  • Editorial Board Member, Clinical & Experimental Pharmacology (2014 - Present)
  • Member Board of Advisors, Genetesis LLC (2014 - Present)
  • Member, Biophysical society (2013 - Present)
  • Member, American physiological Society (2009 - Present)
  • Member, Society for Experimental Biology and Medicine (2009 - Present)
  • Member, American Heart Association (2009 - Present)
  • Member, The American Society for Pharmacology and Experimental Therapeutics (2008 - Present)

Professional Education

  • Diploma, Unlisted School (2001)
  • Master of Science, Unlisted School (2005)
  • Doctor of Philosophy, North Dakota State Univ, Ag & Appl Sci (2012)
  • Bachelor of Science, Nagpur University (2004)
  • Ph.D, North Dakota State University, Fargo, ND, Vascular Pharmacology and Electrophysiology (2012)
  • M.S., National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India, Pharmacology (2005)
  • B.S. Pharmacy, R.T.M. Nagpur University, Nagpur, India, Pharmacy/Pharmaceutical Sciences (2003)

Stanford Advisors


All Publications

  • Engineered heart tissues and induced pluripotent stem cells: Macro- and microstructures for disease modeling, drug screening, and translational studies. Advanced drug delivery reviews Tzatzalos, E., Abilez, O. J., Shukla, P., Wu, J. C. 2016; 96: 234-244


    Engineered heart tissue has emerged as a personalized platform for drug screening. With the advent of induced pluripotent stem cell (iPSC) technology, patient-specific stem cells can be developed and expanded into an indefinite source of cells. Subsequent developments in cardiovascular biology have led to efficient differentiation of cardiomyocytes, the force-producing cells of the heart. iPSC-derived cardiomyocytes (iPSC-CMs) have provided potentially limitless quantities of well-characterized, healthy, and disease-specific CMs, which in turn has enabled and driven the generation and scale-up of human physiological and disease-relevant engineered heart tissues. The combined technologies of engineered heart tissue and iPSC-CMs are being used to study diseases and to test drugs, and in the process, have advanced the field of cardiovascular tissue engineering into the field of precision medicine. In this review, we will discuss current developments in engineered heart tissue, including iPSC-CMs as a novel cell source. We examine new research directions that have improved the function of engineered heart tissue by using mechanical or electrical conditioning or the incorporation of non-cardiomyocyte stromal cells. Finally, we discuss how engineered heart tissue can evolve into a powerful tool for therapeutic drug testing.

    View details for DOI 10.1016/j.addr.2015.09.010

    View details for PubMedID 26428619

  • Transcriptome Profiling of Patient-Specific Human iPSC-Cardiomyocytes Predicts Individual Drug Safety and Efficacy Responses In Vitro. Cell stem cell Matsa, E., Burridge, P. W., Yu, K. H., Ahrens, J. H., Termglinchan, V., Wu, H., Liu, C., Shukla, P., Sayed, N., Churko, J. M., Shao, N., Woo, N. A., Chao, A. S., Gold, J. D., Karakikes, I., Snyder, M. P., Wu, J. C. 2016


    Understanding individual susceptibility to drug-induced cardiotoxicity is key to improving patient safety and preventing drug attrition. Human induced pluripotent stem cells (hiPSCs) enable the study of pharmacological and toxicological responses in patient-specific cardiomyocytes (CMs) and may serve as preclinical platforms for precision medicine. Transcriptome profiling in hiPSC-CMs from seven individuals lacking known cardiovascular disease-associated mutations and in three isogenic human heart tissue and hiPSC-CM pairs showed greater inter-patient variation than intra-patient variation, verifying that reprogramming and differentiation preserve patient-specific gene expression, particularly in metabolic and stress-response genes. Transcriptome-based toxicology analysis predicted and risk-stratified patient-specific susceptibility to cardiotoxicity, and functional assays in hiPSC-CMs using tacrolimus and rosiglitazone, drugs targeting pathways predicted to produce cardiotoxicity, validated inter-patient differential responses. CRISPR/Cas9-mediated pathway correction prevented drug-induced cardiotoxicity. Our data suggest that hiPSC-CMs can be used in vitro to predict and validate patient-specific drug safety and efficacy, potentially enabling future clinical approaches to precision medicine.

    View details for DOI 10.1016/j.stem.2016.07.006

    View details for PubMedID 27545504

  • Cardiac subtype characterization using all-optical action potential imaging. European heart journal Shukla, P., Wu, J. C. 2016

    View details for DOI 10.1093/eurheartj/ehw380

    View details for PubMedID 27593102

  • iPSC-derived cardiomyocytes reveal abnormal TGF-β signalling in left ventricular non-compaction cardiomyopathy. Nature cell biology Kodo, K., Ong, S. G., Jahanbani, F., Termglinchan, V., Hirono, K., InanlooRahatloo, K., Ebert, A. D., Shukla, P., Abilez, O. J., Churko, J. M., Karakikes, I., Jung, G., Ichida, F., Wu, S. M., Snyder, M. P., Bernstein, D., Wu, J. C. 2016


    Left ventricular non-compaction (LVNC) is the third most prevalent cardiomyopathy in children and its pathogenesis has been associated with the developmental defect of the embryonic myocardium. We show that patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) generated from LVNC patients carrying a mutation in the cardiac transcription factor TBX20 recapitulate a key aspect of the pathological phenotype at the single-cell level and this was associated with perturbed transforming growth factor beta (TGF-β) signalling. LVNC iPSC-CMs have decreased proliferative capacity due to abnormal activation of TGF-β signalling. TBX20 regulates the expression of TGF-β signalling modifiers including one known to be a genetic cause of LVNC, PRDM16, and genome editing of PRDM16 caused proliferation defects in iPSC-CMs. Inhibition of TGF-β signalling and genome correction of the TBX20 mutation were sufficient to reverse the disease phenotype. Our study demonstrates that iPSC-CMs are a useful tool for the exploration of pathological mechanisms underlying poorly understood cardiomyopathies including LVNC.

    View details for DOI 10.1038/ncb3411

    View details for PubMedID 27642787

  • Chemically defined generation of human cardiomyocytes NATURE METHODS Burridge, P. W., Matsa, E., Shukla, P., Lin, Z. C., Churko, J. M., Ebert, A. D., Lan, F., Diecke, S., Huber, B., Mordwinkin, N. M., Plews, J. R., Abilez, O. J., Cui, B., Gold, J. D., Wu, J. C. 2014; 11 (8): 855-860


    Existing methods for human induced pluripotent stem cell (hiPSC) cardiac differentiation are efficient but require complex, undefined medium constituents that hinder further elucidation of the molecular mechanisms of cardiomyogenesis. Using hiPSCs derived under chemically defined conditions on synthetic matrices, we systematically developed an optimized cardiac differentiation strategy, using a chemically defined medium consisting of just three components: the basal medium RPMI 1640, L-ascorbic acid 2-phosphate and rice-derived recombinant human albumin. Along with small molecule-based induction of differentiation, this protocol produced contractile sheets of up to 95% TNNT2(+) cardiomyocytes at a yield of up to 100 cardiomyocytes for every input pluripotent cell and was effective in 11 hiPSC lines tested. This chemically defined platform for cardiac specification of hiPSCs will allow the elucidation of cardiomyocyte macromolecular and metabolic requirements and will provide a minimal system for the study of maturation and subtype specification.

    View details for DOI 10.1038/NMETH.2999

    View details for Web of Science ID 000340075600026

    View details for PubMedID 24930130

  • Development of a Scalable Suspension Culture for Cardiac Differentiation From Human Pluripotent Stem Cells MOLECULAR THERAPY Chen, V. C., Ye, J., Hua, G., Liu, F., Chen, D., Lin, B., Chai, J., Shukla, P., Wu, J., Hsu, D., Couture, L. A. 2014; 22: S204-S205
  • Effect of maternal nutrient restriction and melatonin supplementation from mid to late gestation on vascular reactivity of maternal and fetal placental arteries. Placenta Shukla, P., Lemley, C. O., Dubey, N., Meyer, A. M., O'Rourke, S. T., Vonnahme, K. A. 2014


    Maternal nutrient restriction and decreased scotophase concentrations of melatonin have been associated with severely compromised pregnancies. We hypothesized that melatonin supplementation in a compromised pregnancy enhances the bradykinin (BK)-induced relaxations of placental arteries thereby ensuring sufficient umbilical blood flow to the developing fetus.Pregnant ewes (n = 31) were fed an adequate (ADQ) or nutrient restricted (RES) diet supplemented with 5 mg of melatonin (MEL) or without melatonin (CON) from day 50 to 130 of gestation. On day 130 of gestation, the maternal (caruncular; CAR) and fetal (cotyledonary; COT) placental arteries were suspended in organ chambers for isometric tension recording.There were no treatment or dietary effects on CAR arteries for any vasoactive agent. However, in COT arteries, MEL ewes were more sensitive (P < 0.01) to bradykinin-induced relaxation than CON ewes. There was a melatonin by nutritional level interaction (P < 0.01) with sodium nitroprusside-induced relaxation of COT arteries where CON-RES were more sensitive to sodium nitroprusside compared to CON-ADQ, which was in contrast to when ewes were fed MEL. There was a significant melatonin by nutritional interaction (P = 0.04) for responsiveness to norepinephrine. The sensitivity of the COT arteries to norepinephrine in CON-RES ewes was decreased compared to CON-ADQ. Melatonin supplementation, regardless of maternal dietary intake, resulted in COT arteries having similar responsiveness to CON-RES ewes.An increase in placental vessel sensitivity to bradykinin-induced relaxation may contribute to melatonin-induced increases in umbilical artery blood flow.

    View details for DOI 10.1016/j.placenta.2014.04.007

    View details for PubMedID 24816515

  • Maternal Nutrient Restriction During Pregnancy Impairs an Endothelium-Derived Hyperpolarizing Factor-Like Pathway in Sheep Fetal Coronary Arteries. American journal of physiology. Heart and circulatory physiology Shukla, P., Ghatta, S., Dubey, N., Lemley, C. O., Johnson, M. L., Modgil, A., Vonnahme, K. A., Caton, J. S., Reynolds, L. P., Sun, C., O'Rourke, S. T. 2014


    The mechanisms underlying developmental programming are poorly understood but may be associated with adaptations by the fetus in response to changes in maternal environment during pregnancy. We hypothesized that maternal nutrient restriction during pregnancy alters vasodilator responses in fetal coronary arteries. Pregnant ewes were fed a control (100% NRC) or nutrient-restricted (60% NRC) diet from day 50-130 of gestation (term = 145 days); fetal tissues were collected at day 130. In coronary arteries isolated from control fetal lambs, relaxation to bradykinin was unaffected by nitro-l-arginine (NLA). Iberiotoxin or contraction with KCl abolished the NLA-resistant response to bradykinin. In fetal coronary arteries from nutrient-restricted ewes, relaxation to bradykinin was fully suppressed by NLA. BKCa currents did not differ in coronary smooth muscle cells from control and nutrient-restricted animals. The BKCa-openers, BMS191011 and NS1619, and 14,15-EET (a putative endothelium-derived hyperpolarizing factor [EDHF]), each caused fetal coronary artery relaxation and BKCa current activation that was unaffected by maternal nutrient restriction. Expression of BKCa-channel subunits did not differ in fetal coronary arteries from control or undernourished ewes. The results indicate that maternal undernutrition during pregnancy results in loss of the EDHF-like pathway in fetal coronary arteries in response to bradykinin, an effect that cannot be explained by decreased number or activity of BKCa channels, or by decreased sensitivity to mediators that activate BKCa channels in vascular smooth muscle cells. Under these conditions, bradykinin-induced relaxation is completely dependent on NO, which may represent an adaptive response to compensate for the absence of the EDHF-like pathway.

    View details for DOI 10.1152/ajpheart.00595.2013

    View details for PubMedID 24816259

  • 2011 AND 2012 EARLY CAREERS ACHIEVEMENT AWARDS: Placental programming: How the maternal environment can impact placental function. Journal of animal science Vonnahme, K. A., Lemley, C. O., Shukla, P., O'Rourke, S. T. 2013; 91 (6): 2467-2480


    Proper establishment of the placenta is important for fetal survival; however, placental adaptations to inadequate maternal nutrition or other stressors are imperative for fetal growth to be optimal. The effects of maternal nutritional status and activity level on placental vascular function and uteroplacental blood flows are important to understand as improper placental function leads to reduced growth of the fetus. In environments where fetal growth can be compromised, potential therapeutics may augment placental function and delivery of nutrients to improve offspring performance during postnatal life. Factors that could enhance placental function include supplementation of specific nutrients, such as protein, hormone supplements, such as indolamines, and increased activity levels of the dam. To understand the mechanism of how the maternal environment can impact uterine or umbilical blood flows, assessment of placental vascular reactivity has been studied in several large animal models. As we begin to understand how the maternal environment impacts uterine and umbilical blood flows and other uteroplacental hemodynamic parameters, development of management methods and therapeutics for proper fetal growth can be achieved.

    View details for DOI 10.2527/jas.2012-5929

    View details for PubMedID 23307854

  • Melatonin inhibits nitric oxide signaling by increasing PDE5 phosphorylation in coronary arteries AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY Shukla, P., Sun, C., O'Rourke, S. T. 2012; 303 (12): H1418-H1425


    Melatonin inhibits nitric oxide (NO)-induced relaxation of coronary arteries. We tested the hypothesis that melatonin increases the phosphorylation of phosphodiesterase 5 (PDE5), which increases the activity of the enzyme and thereby decreases intracellular cGMP accumulation in response to NO and inhibits NO-induced relaxation. Sodium nitroprusside (SNP) and 8-Br-cGMP caused concentration-dependent relaxation of isolated coronary arteries suspended in organ chambers for isometric tension recording. In the presence of melatonin, the concentration-response curve to SNP, but not 8-Br-cGMP, was shifted to the right. The effect of melatonin on SNP-induced relaxation was abolished in the presence of the PDE5 inhibitors zaprinast and sildenafil. Melatonin markedly inhibited the SNP-induced increase in intracellular cGMP in coronary arteries, an effect that was also abolished by zaprinast. Treatment of coronary arteries with melatonin caused a nearly fourfold increase in the phosphorylation of PDE5, which increased the catalytic activity of the enzyme and thereby increased the degradation of cGMP to inactive 5'-GMP. Melatonin-induced PDE5 phosphorylation was markedly attenuated in the presence of the PKG1 inhibitors DT-2 or Rp-8-Br-PET-cGMPS and in those arteries in which PKG1 expression was first downregulated by 24-h incubation with SNP before exposure to melatonin. The selective MT(2) receptor antagonist 4-phenyl-2-propionamidotetralin completely blocked the stimulatory effect of melatonin on PDE5 phosphorylation as well as the inhibitory effect of melatonin on SNP-induced relaxation and intracellular cGMP. Thus, in coronary arteries, melatonin acts via MT(2) receptors and PKG1 to increase PDE5 phosphorylation, resulting in decreased cGMP accumulation in response to NO and impaired NO-induced vasorelaxation.

    View details for DOI 10.1152/ajpheart.00211.2012

    View details for Web of Science ID 000312585400004

    View details for PubMedID 23086989

  • Curcumin ((E,E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) activates and desensitizes the nociceptor ion channel TRPA1 NEUROSCIENCE LETTERS Leamy, A. W., Shukla, P., McAlexander, M. A., Carr, M. J., Ghatta, S. 2011; 503 (3): 157-162


    The ion channel TRPA1 is activated by a wide variety of noxious stimuli, such as pollutants, products of oxidative tissue damage, and pungent natural products. Many TRPA1 activators are reactive electrophiles that form Michael adducts with cysteine and lysine residues of TRPA1's intracellular N-terminus. Curcumin, the active principle of turmeric root (Curcuma longa), can also form Michael adducts. In order to test the hypothesis that the electrophilic curcumin activates TRPA1, we have performed whole-cell, voltage-clamp analysis on both HEK293 cells expressing human TRPA1 (hTRPA1-HEK) and native mouse vagal neurons. In nominally calcium-free extracellular and intracellular solutions which minimized the chances of calcium-dependent activation of TRPA1, curcumin increased TRPA1 currents in hTRPA1-HEK cells in a concentration-dependent manner (1-30?M) but did not cause block or activation of recombinant TRPM8 and TRPV1. In addition, 7 out of 11 vagal sensory neurons from wild type mice responded to curcumin (30?M) with inward currents (11.6±5.4pA/pF) that were largely reversed by TRPA1 blockers. In marked contrast, neurons from TRPA1-deficient mice did not respond to curcumin (30?M). With physiological levels of calcium added to the external solution to facilitate channel desensitization, curcumin-dependent currents in hTRPA1-HEK cells were completely desensitized and exhibited marked tachyphylaxis upon subsequent application of curcumin. Taken together, these results demonstrate that curcumin causes activation and subsequent desensitization of native and recombinant TRPA1 ion channels of multiple mammalian species.

    View details for DOI 10.1016/j.neulet.2011.07.054

    View details for Web of Science ID 000296416000001

    View details for PubMedID 21855605

  • MT2 Receptors Mediate the Inhibitory Effects of Melatonin on Nitric Oxide-Induced Relaxation of Porcine Isolated Coronary Arteries JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS Tunstall, R. R., Shukla, P., Grazul-Bilska, A., Sun, C., O'Rourke, S. T. 2011; 336 (1): 127-133


    Previous studies from our laboratory demonstrated that melatonin inhibits nitric oxide (NO)-induced relaxation in porcine coronary arteries. The present study was designed to further characterize the mechanisms underlying this inhibitory effect of melatonin. Western immunoblot studies identified the presence of melatonin type 2 (MT(2)) receptors, but not MT(1) or MT(3) receptors, in porcine coronary arteries. Immunohistochemical analysis revealed that MT(2) receptors colocalized with ?-actin in the smooth muscle cell layer. In coronary arterial rings suspended in organ chambers for isometric tension recording, melatonin (10(-7) M) inhibited relaxations induced by the exogenous NO donor sodium nitroprusside (SNP; 10(-9) to 10(-5) M) and by the ?(2)-adrenoceptor agonist 5-bromo-6-[2-imidazolin-2-yl-amino]-quinoxaline (UK14,304; 10(-9) to 10(-5) M), an endothelium-dependent vasodilator. The inhibitory effect of melatonin on SNP- and UK14,304-induced relaxations was abolished in the presence of the selective MT(2) receptor antagonists 4-phenyl-2-propionamidotetralin (4P-PDOT; 10(-7) M) and luzindole (10(-7) M). In contrast to melatonin, the selective MT(3) receptor agonist 5-methoxycarbonylamino-N-acetyltryptamine (5-MCA-NAT; 10(-7) M) had no effect on the concentration-response curves to either SNP or UK14,304. Melatonin (10(-7) M) had no effect on coronary artery relaxation induced by 8-bromoguanosine 3',5'-cyclic monophosphate, but it significantly attenuated the increase in intracellular cyclic GMP levels in response to SNP (10(-5) M). This effect of melatonin was abolished in the presence of 4P-PDOT (10(-7) M). Taken together, these data support the view that melatonin acts on MT(2) receptors in coronary vascular smooth muscle cells to inhibit NO-induced increases in cyclic GMP and coronary arterial relaxation, thus demonstrating a novel function for MT(2) receptors in the vasculature.

    View details for DOI 10.1124/jpet.110.174482

    View details for Web of Science ID 000285338400016

    View details for PubMedID 20959363