Professional Education

  • Doctor of Philosophy, Cornell University (2011)
  • Master of Science, Cornell University (2005)
  • Bachelor of Science, Fujen University (2001)

Stanford Advisors


All Publications

  • Mass cytometry analysis shows that a novel memory phenotype B cell is expanded in multiple myeloma. Cancer immunology research Hansmann, L., Blum, L., Ju, C., Liedtke, M., Robinson, W. H., Davis, M. M. 2015; 3 (6): 650-660


    It would be very beneficial if the status of cancers could be determined from a blood specimen. However, peripheral blood leukocytes are very heterogeneous between individuals, and thus high-resolution technologies are likely required. We used cytometry by time-of-flight and next-generation sequencing to ask whether a plasma cell cancer (multiple myeloma) and related precancerous states had any consistent effect on the peripheral blood mononuclear cell phenotypes of patients. Analysis of peripheral blood samples from 13 cancer patients, 9 precancer patients, and 9 healthy individuals revealed significant differences in the frequencies of the T-cell, B-cell, and natural killer-cell compartments. Most strikingly, we identified a novel B-cell population that normally accounts for 4.0% ± 0.7% (mean ± SD) of total B cells and is up to 13-fold expanded in multiple myeloma patients with active disease. This population expressed markers previously associated with both memory (CD27(+)) and naïve (CD24(lo)CD38(+)) phenotypes. Single-cell immunoglobulin gene sequencing showed polyclonality, indicating that these cells are not precursors to the myeloma, and somatic mutations, a characteristic of memory cells. SYK, ERK, and p38 phosphorylation responses, and the fact that most of these cells expressed isotypes other than IgM or IgD, confirmed the memory character of this population, defining it as a novel type of memory B cells.

    View details for DOI 10.1158/2326-6066.CIR-14-0236-T

    View details for PubMedID 25711758

  • Mass Cytometry Analysis Shows That a Novel Memory Phenotype B Cell Is Expanded in Multiple Myeloma CANCER IMMUNOLOGY RESEARCH Hansmann, L., Blum, L., Ju, C., Liedtke, M., Robinson, W. H., Davis, M. M. 2015; 3 (6): 650-660
  • Barcode-Enabled Sequencing of Plasmablast Antibody Repertoires in Rheumatoid Arthritis ARTHRITIS & RHEUMATOLOGY Tan, Y., Kongpachith, S., Blum, L. K., Ju, C., Lahey, L. J., Lu, D. R., Cai, X., Wagner, C. A., Lindstrom, T. M., Sokolove, J., Robinson, W. H. 2014; 66 (10): 2706-2715

    View details for DOI 10.1002/art.38754

    View details for Web of Science ID 000342744300008

  • High-throughput sequencing of natively paired antibody chains provides evidence for original antigenic sin shaping the antibody response to influenza vaccination CLINICAL IMMUNOLOGY Tan, Y., Blum, L. K., Kongpachith, S., Ju, C., Cai, X., Lindstrom, T. M., Sokolove, J., Robinson, W. H. 2014; 151 (1): 55-65


    We developed a DNA barcoding method to enable high-throughput sequencing of the cognate heavy- and light-chain pairs of the antibodies expressed by individual B cells. We used this approach to elucidate the plasmablast antibody response to influenza vaccination. We show that >75% of the rationally selected plasmablast antibodies bind and neutralize influenza, and that antibodies from clonal families, defined by sharing both heavy-chain VJ and light-chain VJ sequence usage, do so most effectively. Vaccine-induced heavy-chain VJ regions contained on average >20 nucleotide mutations as compared to their predicted germline gene sequences, and some vaccine-induced antibodies exhibited higher binding affinities for hemagglutinins derived from prior years' seasonal influenza as compared to their affinities for the immunization strains. Our results show that influenza vaccination induces the recall of memory B cells that express antibodies that previously underwent affinity maturation against prior years' seasonal influenza, suggesting that 'original antigenic sin' shapes the antibody response to influenza vaccination.

    View details for DOI 10.1016/j.clim.2013.12.008

    View details for Web of Science ID 000332351100006

    View details for PubMedID 24525048

Stanford Medicine Resources: