School of Medicine


Showing 4,171-4,180 of 4,828 Results

  • Maral Tajerian

    Maral Tajerian

    Postdoctoral Research fellow, Anesthesiology, Perioperative and Pain Medicine

    Bio Chronic pain affects millions of people worldwide and is a serious socioeconomic problem. Unfortunately, pain mechanisms are poorly understood, often resulting in inadequate treatment outcomes where the vast majority of individuals suffer for years with little relief. Fortunately, in the last decade, we have witnessed an increased enthusiasm in the field of pain research; a trend that is very encouraging for the millions of pain sufferers worldwide.
    My PhD work has focused on a very prevalent condition: chronic low back pain. The main emphasis was on the mechanisms of back pain in a mouse model and we were fortunate enough to translate our findings to humans. Interestingly, we were also the first group to report the link between DNA methylation and pain; a field that is currently advancing very rapidly since it provides a molecular mechanism of environment-gene interactions. In addition to our back pain studies, we have also carried out research examining the brain changes that occur after peripheral nerve injury, with particular emphasis on reversible methylation changes in the prefrontal cortex. Our findings provide the molecular link between peripheral nerve injury and changes in the brain, thus helping us account for the co-morbidities associated with pain. These formative years at the Alan Edwards Center for Research on Pain (AECRP) have given me a solid training in the field of pain research.
    I began my postdoctoral training at Stanford University in 2013, where I chose to study another debilitating chronic pain condition, Complex Regional Pain Syndrome (CRPS). Using a previously-validated mouse model of CRPS, we could show that pain-associated comorbidities are paralleled by dendritic architectural changes in various brain regions. In parallel, I developed a novel interest in the autoimmune mechanisms of CRPS, an area that remains largely unexplored. We believe this line of investigation to be paradigm shifting; indeed, approaching CRPS as an autoimmune disease opens entirely new experimental pathways to identifying specific supporting mechanisms and provides opportunities for novel therapeutic development.
    In addition to laboratory research, I am passionate about science outreach in general and pain outreach in particular. I believe it is our responsibility as scientists to disseminate our knowledge to the layperson, particularly since chronic pain is a widespread condition with significant socioeconomic impact. To that end, I am an avid participant in pain awareness efforts through public lectures and social media involvement.

  • Michal Tal

    Michal Tal

    Postdoctoral Research fellow, Stem Cell Biology and Regenerative Medicine

    Current Research and Scholarly Interests Investigating how the CD47-SIRPa axis modulates multiple facets of immunity

  • William Talbot

    William Talbot

    Professor of Developmental Biology

    Current Research and Scholarly Interests We use genetic and cellular approaches to investigate the molecular basis of glial development and myelination in the zebrafish.

  • John S. Tamaresis, PhD, MS

    John S. Tamaresis, PhD, MS

    Biostatistician, Biomedical Data Science

    Bio Dr. Tamaresis joined the Stanford University School of Medicine in Summer 2012. He earned the Ph.D. in Applied Mathematics from the University of California, Davis and received the M.S. in Statistics from the California State University, East Bay. He has conducted research in computational biology as a postdoctoral scholar at the University of California, Merced and as a biostatistician at the University of California, San Francisco.

    As a statistician, Dr. Tamaresis has developed and validated a highly accurate statistical biomarker classifier for gynecologic disease by applying multivariate techniques to a large genomic data set. His statistical consultations have produced data analyses for published research studies and analysis plans for novel research proposals in grant applications. As an applied mathematician, Dr. Tamaresis has created computational biology models and devised numerical methods for their solution. He devised a probabilistic model to study how the number of binding sites on a novel therapeutic molecule affected contact time with cancer cells to advise medical researchers about its design. For his doctoral dissertation, he created and analyzed the first mathematical system model for a mechanosensory network in vascular endothelial cells to investigate the initial stage of atherosclerotic disease.