School of Medicine


Showing 1-10 of 18 Results

  • Michele Calos

    Michele Calos

    Professor of Genetics

    Current Research and Scholarly Interests My lab is developing innovative gene and stem cell therapies for genetic diseases, with a focus on gene therapy and regenerative medicine.

    We have created novel methods for inserting therapeutic genes into the chromosomes at specific places by using homologous recombination and recombinase enzymes.

    We are working on 3 forms of muscular dystrophy.

    We created induced pluripotent stem cells from patient fibroblasts, added therapeutic genes, differentiated, and engrafted the cells.

  • Michelle Whirl Carrillo

    Michelle Whirl Carrillo

    Sr Res Engineer, Genetics

    Current Role at Stanford Associate Director, PharmGKB
    www.pharmgkb.org

  • Mike Cherry

    Mike Cherry

    Professor (Research) of Genetics

    Current Research and Scholarly Interests My research involves identifying, validating and integrating scientific facts into encyclopedic databases essential for research and scientific education. Published results of scientific experimentation are a foundation of our understanding of the natural world and provide motivation for new experiments. The combination of in-depth understanding reported in the literature with computational analyses is an essential ingredient of modern biological research.

  • Chen-Hua Chuang

    Chen-Hua Chuang

    Postdoctoral Research fellow, Genetics

    Current Research and Scholarly Interests Metastasis is a major clinical challenge driven by poorly understood cell state alterations. The goal of my project is to use unbiased genomic methods and in vivo models to better understand the molecular and cellular changes that underlie tumor progression and each step of the metastatic cascade. We use genetically-engineered mouse models of metastatic cancer in which the resulting tumors recapitulate the genetic alterations and histological progression of the human disease.

    In these models, tumors develop within their appropriate microenvironment and undergo changes in their gene expression programs that endow them with the ability to invade blood and lymphatic vessels, survive in circulation, enter various distant organs, and ultimately grow into new tumor lesions. Given the dearth of human tissue samples from metastatic disease, especially from primary tumors and metastases from the same patient prior to therapy, these models represent a unique opportunity to understand the molecular biography of the most prevalent tumor types.

    By generating activating and inactivating germline and inducible alleles, and modulating gene expression using lentiviral vectors, these models allow us to characterize the function of candidate genes and pathways during tumor progression and metastasis in vivo. By incorporating increasingly quantitative methods and powerful in vivo methods, our work is focused on uncovering general rules that govern tumor progression and metastatic spread and discovering novel therapeutic targets across the continuum of cancer progression including the lethal metastatic stage.

Stanford Medicine Resources: