Professional Education

  • Doctor of Philosophy, University Of Helsinki (2012)
  • Master of Science, Unlisted University (2006)

Stanford Advisors


All Publications

  • Transcriptome Dynamics of the Stomatal Lineage: Birth, Amplification, and Termination of a Self-Renewing Population DEVELOPMENTAL CELL Adrian, J., Chang, J., Ballenger, C. E., Bargmann, B. O., Alassimone, J., Davies, K. A., Lau, O. S., Matos, J. L., Hachez, C., Lanctot, A., Vaten, A., Birnbaum, K. D., Bergmann, D. C. 2015; 33 (1): 107-118


    Developmental transitions can be described in terms of morphology and the roles of individual genes, but also in terms of global transcriptional and epigenetic changes. Temporal dissections of transcriptome changes, however, are rare for intact, developing tissues. We used RNA sequencing and microarray platforms to quantify gene expression from labeled cells isolated by fluorescence-activated cell sorting to generate cell-type-specific transcriptomes during development of an adult stem-cell lineage in the Arabidopsis leaf. We show that regulatory modules in this early lineage link cell types that had previously been considered to be under separate control and provide evidence for recruitment of individual members of gene families for different developmental decisions. Because stomata are physiologically important and because stomatal lineage cells exhibit exemplary division, cell fate, and cell signaling behaviors, this dataset serves as a valuable resource for further investigations of fundamental developmental processes.

    View details for DOI 10.1016/j.devcel.2015.01.025

    View details for Web of Science ID 000352454200011

    View details for PubMedID 25850675

  • Mechanisms of stomatal development: an evolutionary view EVODEVO Vaten, A., Bergmann, D. C. 2012; 3


    Plant development has a significant postembryonic phase that is guided heavily by interactions between the plant and the outside environment. This interplay is particularly evident in the development, pattern and function of stomata, epidermal pores on the aerial surfaces of land plants. Stomata have been found in fossils dating from more than 400 million years ago. Strikingly, the morphology of the individual stomatal complex is largely unchanged, but the sizes, numbers and arrangements of stomata and their surrounding cells have diversified tremendously. In many plants, stomata arise from specialized and transient stem-cell like compartments on the leaf. Studies in the flowering plant Arabidopsis thaliana have established a basic molecular framework for the acquisition of cell fate and generation of cell polarity in these compartments, as well as describing some of the key signals and receptors required to produce stomata in organized patterns and in environmentally optimized numbers. Here we present parallel analyses of stomatal developmental pathways at morphological and molecular levels and describe the innovations made by particular clades of plants.

    View details for DOI 10.1186/2041-9139-3-11

    View details for Web of Science ID 000310696500001

    View details for PubMedID 22691547

Stanford Medicine Resources: