Bio

Honors & Awards


  • “Highlights of PMB in 2012” <http://goo.gl/aXoPho>, Physics in Medicine and Biology (PMB) (2013)
  • “The top 10 most popular paper of 2012” <http://goo.gl/9Gp0M4&lt >, Physics in Medicine and Biology (PMB). (2013)
  • “Robert C. Block Prize" winner for Radiation Technology Research, Rensselaer Polytechnic Institute (2012)

Education & Certifications


  • PhD, Rensselaer Polytechnic Institute, Health/Medical Physics (2012)
  • DSc, Chinese Academy of Science, Biophysics (2009)
  • MS, Chinese Academy of Science, Nuclear Engineering and Science (2006)

Publications

Journal Articles


  • VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients PHYSICS IN MEDICINE AND BIOLOGY Ding, A., Gao, Y., Liu, H., Caracappa, P. F., Long, D. J., Bolch, W. E., Liu, B., Xu, X. G. 2015; 60 (14): 5601-5625

    Abstract

    This paper describes the development and testing of VirtualDose-a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the 'software as a service (SaaS)' delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose's functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT-two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations.

    View details for DOI 10.1088/0031-9155/60/14/5601

    View details for Web of Science ID 000357620400017

    View details for PubMedID 26134511

  • Development of an accurate EPID-based output measurement and dosimetric verification tool for electron beam therapy. Medical physics Ding, A., Xing, L., Han, B. 2015; 42 (7): 4190-?

    Abstract

    To develop an efficient and robust tool for output measurement and absolute dose verification of electron beam therapy by using a high spatial-resolution and high frame-rate amorphous silicon flat panel electronic portal imaging device (EPID).The dosimetric characteristics of the EPID, including saturation, linearity, and ghosting effect, were first investigated on a Varian Clinac 21EX accelerator. The response kernels of the individual pixels of the EPID to all available electron energies (6, 9, 12, 16, and 20 MeV) were calculated by using Monte Carlo (MC) simulations, which formed the basis to deconvolve an EPID raw images to the incident electron fluence map. The two-dimensional (2D) dose distribution at reference depths in water was obtained by using the constructed fluence map with a MC simulated pencil beam kernel with consideration of the geometric and structural information of the EPID. Output factor measurements were carried out with the EPID at a nominal source-surface distance of 100 cm for 2 × 2, 3 × 3, 6 × 6, 10 × 10, and 15 × 15 cm(2) fields for all available electron energies, and the results were compared with that measured in a solid water phantom using film and a Farmer-type ion chamber. The dose distributions at a reference depth specific to each energy and the flatness and symmetry of the 10 × 10 cm(2) electron beam were also measured using EPID, and the results were compared with ion chamber array and water scan measurements. Finally, three patient cases with various field sizes and irregular cutout shapes were also investigated.EPID-measured dose changed linearly with the monitor units and showed little ghosting effect for dose rate up to 600 MU/min. The flatness and symmetry measured with the EPID were found to be consistent with ion chamber array and water scan measurements. The EPID-measured output factors for standard square fields of 2 × 2, 3 × 3, 6 × 6, 10 × 10, 15 × 15 cm(2) agreed with film and ion chamber measurements. The average discrepancy between EPID and ion chamber/film measurements was 0.81% ± 0.60% (SD) and 1.34% ± 0.75%, respectively. For the three clinical cases, the difference in output between the EPID- and ion chamber array measured values was found to be 1.13% ± 0.11%, 0.54% ± 0.10%, and 0.74% ± 0.11%, respectively. Furthermore, the γ-index analysis showed an excellent agreement between the EPID- and ion chamber array measured dose distributions: 100% of the pixels passed the criteria of 3%/3 mm. When the γ-index was set to be 2%/2 mm, the pass rate was found to be 99.0% ± 0.07%, 98.2% ± 0.14%, and 100% for the three cases.The EPID dosimetry system developed in this work provides an accurate and reliable tool for routine output measurement and dosimetric verification of electron beam therapy. Coupled with its portability and ease of use, the proposed system promises to replace the current film-based approach for fast and reliable assessment of small and irregular electron field dosimetry.

    View details for DOI 10.1118/1.4922400

    View details for PubMedID 26133618

  • Independent calculation of monitor units for VMAT and SPORT. Medical physics Chen, X., Bush, K., Ding, A., Xing, L. 2015; 42 (2): 918-?

    Abstract

    Dose and monitor units (MUs) represent two important facets of a radiation therapy treatment. In current practice, verification of a treatment plan is commonly done in dose domain, in which a phantom measurement or forward dose calculation is performed to examine the dosimetric accuracy and the MU settings of a given treatment plan. While it is desirable to verify directly the MU settings, a computational framework for obtaining the MU values from a known dose distribution has yet to be developed. This work presents a strategy to calculate independently the MUs from a given dose distribution of volumetric modulated arc therapy (VMAT) and station parameter optimized radiation therapy (SPORT).The dose at a point can be expressed as a sum of contributions from all the station points (or control points). This relationship forms the basis of the proposed MU verification technique. To proceed, the authors first obtain the matrix elements which characterize the dosimetric contribution of the involved station points by computing the doses at a series of voxels, typically on the prescription surface of the VMAT/SPORT treatment plan, with unit MU setting for all the station points. An in-house Monte Carlo (MC) software is used for the dose matrix calculation. The MUs of the station points are then derived by minimizing the least-squares difference between doses computed by the treatment planning system (TPS) and that of the MC for the selected set of voxels on the prescription surface. The technique is applied to 16 clinical cases with a variety of energies, disease sites, and TPS dose calculation algorithms.For all plans except the lung cases with large tissue density inhomogeneity, the independently computed MUs agree with that of TPS to within 2.7% for all the station points. In the dose domain, no significant difference between the MC and Eclipse Anisotropic Analytical Algorithm (AAA) dose distribution is found in terms of isodose contours, dose profiles, gamma index, and dose volume histogram (DVH) for these cases. For the lung cases, the MC-calculated MUs differ significantly from that of the treatment plan computed using AAA. However, the discrepancies are reduced to within 3% when the TPS dose calculation algorithm is switched to a transport equation-based technique (Acuros™). Comparison in the dose domain between the MC and Eclipse AAA/Acuros calculation yields conclusion consistent with the MU calculation.A computational framework relating the MU and dose domains has been established. The framework does not only enable them to verify the MU values of the involved station points of a VMAT plan directly in the MU domain but also provide a much needed mechanism to adaptively modify the MU values of the station points in accordance to a specific change in the dose domain.

    View details for DOI 10.1118/1.4906185

    View details for PubMedID 25652504

  • Extension of RPI-adult male and female computational phantoms to obese patients and a Monte Carlo study of the effect on CT imaging dose PHYSICS IN MEDICINE AND BIOLOGY Ding, A., Mille, M. M., Liu, T., Caracappa, P. F., Xu, X. G. 2012; 57 (9)

    Abstract

    Although it is known that obesity has a profound effect on x-ray computed tomography (CT) image quality and patient organ dose, quantitative data describing this relationship are not currently available. This study examines the effect of obesity on the calculated radiation dose to organs and tissues from CT using newly developed phantoms representing overweight and obese patients. These phantoms were derived from the previously developed RPI-adult male and female computational phantoms. The result was a set of ten phantoms (five males, five females) with body mass indexes ranging from 23.5 (normal body weight) to 46.4 kg m(-2) (morbidly obese). The phantoms were modeled using triangular mesh geometry and include specified amounts of the subcutaneous adipose tissue and visceral adipose tissue. The mesh-based phantoms were then voxelized and defined in the Monte Carlo N-Particle Extended code to calculate organ doses from CT imaging. Chest-abdomen-pelvis scanning protocols for a GE LightSpeed 16 scanner operating at 120 and 140 kVp were considered. It was found that for the same scanner operating parameters, radiation doses to organs deep in the abdomen (e.g., colon) can be up to 59% smaller for obese individuals compared to those of normal body weight. This effect was found to be less significant for shallow organs. On the other hand, increasing the tube potential from 120 to 140 kVp for the same obese individual resulted in increased organ doses by as much as 56% for organs within the scan field (e.g., stomach) and 62% for those out of the scan field (e.g., thyroid), respectively. As higher tube currents are often used for larger patients to maintain image quality, it was of interest to quantify the associated effective dose. It was found from this study that when the mAs was doubled for the obese level-I, obese level-II and morbidly-obese phantoms, the effective dose relative to that of the normal weight phantom increased by 57%, 42% and 23%, respectively. This set of new obese phantoms can be used in the future to study the optimization of image quality and radiation dose for patients of different weight classifications. Our ultimate goal is to compile all the data derived from these phantoms into a comprehensive dosimetry database defined in the VirtualDose software.

    View details for DOI 10.1088/0031-9155/57/9/2441

    View details for Web of Science ID 000303046200005

    View details for PubMedID 22481470

  • Monte Carlo calculation of imaging doses from diagnostic multidetector CT and kilovoltage cone-beam CT as part of prostate cancer treatment plans MEDICAL PHYSICS Ding, A., Gu, J., Trofimov, A. V., Xu, X. G. 2010; 37 (12): 6199-6204

    Abstract

    To calculate imaging doses to the rectum, bladder, and femoral heads as part of a prostate cancer treatment plans, assuming an image guided radiation therapy (IGRT) procedure involving either the multidetector CT (MDCT) or kilovoltage cone-beam CT (kV CBCT).This study considered an IGRT treatment plan for a prostate carcinoma patient involving 50.4 Gy from 28 initial fractions and a boost of 28.8 Gy from 16 fractions. A total of 45 CT imaging procedures, each involving a MDCT or a kV CBCT scan procedure, were carefully modeled using the MCNPX code version 2.5.0. The MDCT scanner model is based on the GE LightSpeed 16-MDCT scanner and the kV CBCT scanner model is based on the Varian On-Board Imager using parameters reported by the CT manufacturers and literatures. A patient-specific treatment planning CT data set was used to construct the phantom for the dose calculation. The target, organs-at-risk (OARs), and background voxels in the CT data set were categorized into six tissue types according to CT numbers for Monte Carlo calculations.For a total of 45 imaging procedures, it was found that the rectum received 78.4 and 76.7 cGy from MDCT and kV CBCT, respectively. The bladder received slightly greater doses of 82.4 and 77.9 cGy, while the femoral heads received much higher doses of 182.3 and 141.3 cGy from MDCT and kV CBCT, respectively. To investigate the impact of these imaging doses on treatment planning, OAR doses from MDCT or kV CBCT imaging procedures were added to the corresponding dose matrix reported by the original treatment plans to construct dose volume histograms. It was found that after the imaging dose is added, the rectum volumes irradiated to 75 and 70 Gy increased from 13.9% and 21.2%, respectively, in the original plan to 14.8% and 21.8%. The bladder volumes receiving 80 Gy increased to 4.6% from 4.1% in the original plan and the volume receiving 75 Gy increased to 7.9% from 7.5%. All values remained within the tolerance levels: V70<25%, V75 <15% for rectum and V75 < 25%, V80 < 15% for bladder. The irradiation of femoral heads was also acceptable with no volume receiving >45 Gy.IGRT procedures can irradiate the OARs to an imaging dose level that is great enough to require careful evaluation and perhaps even adjustment of original treatment planning in order to still satisfy the dose constraints. This study only considered one patient CT because the CT x rays cover a relatively larger volume of the body and the dose distribution is considerably more uniform than those associated with the therapeutic beams. As a result, the dose to an organ from CT imaging doses does not vary much from one patient to the other for the same CT settings. One factor that would potentially affect such CT dose level is the size of the patient body. More studies are needed to develop accurate and convenient methods of accounting for the imaging doses as part of treatment planning.

    View details for DOI 10.1118/1.3512791

    View details for Web of Science ID 000285849400010

    View details for PubMedID 21302776

  • TRAINING SOFTWARE USING VIRTUAL-REALITY TECHNOLOGY AND PRE-CALCULATED EFFECTIVE DOSE DATA HEALTH PHYSICS Ding, A., Zhang, D., Xu, X. G. 2009; 96 (5): 594-601

    Abstract

    This paper describes the development of a software package, called VR Dose Simulator, which aims to provide interactive radiation safety and ALARA training to radiation workers using virtual-reality (VR) simulations. Combined with a pre-calculated effective dose equivalent (EDE) database, a virtual radiation environment was constructed in VR authoring software, EON Studio, using 3-D models of a real nuclear power plant building. Models of avatars representing two workers were adopted with arms and legs of the avatar being controlled in the software to simulate walking and other postures. Collision detection algorithms were developed for various parts of the 3-D power plant building and avatars to confine the avatars to certain regions of the virtual environment. Ten different camera viewpoints were assigned to conveniently cover the entire virtual scenery in different viewing angles. A user can control the avatar to carry out radiological engineering tasks using two modes of avatar navigation. A user can also specify two types of radiation source: Cs and Co. The location of the avatar inside the virtual environment during the course of the avatar's movement is linked to the EDE database. The accumulative dose is calculated and displayed on the screen in real-time. Based on the final accumulated dose and the completion status of all virtual tasks, a score is given to evaluate the performance of the user. The paper concludes that VR-based simulation technologies are interactive and engaging, thus potentially useful in improving the quality of radiation safety training. The paper also summarizes several challenges: more streamlined data conversion, realistic avatar movement and posture, more intuitive implementation of the data communication between EON Studio and VB.NET, and more versatile utilization of EDE data such as a source near the body, etc., all of which needs to be addressed in future efforts to develop this type of software.

    View details for Web of Science ID 000265066800008

    View details for PubMedID 19359853

Stanford Medicine Resources: