Professional Education

  • Master of Science, Duke University (2011)
  • Bachelor of Economics, Peking University (2005)
  • Doctor of Philosophy, Duke University (2011)
  • Bachelor of Science, Peking University (2005)

Stanford Advisors


Journal Articles

  • Munc13-1 Is Required for Presynaptic Long-Term Potentiation JOURNAL OF NEUROSCIENCE Yang, Y., Calakos, N. 2011; 31 (33): 12053-12057


    Long-lasting forms of synaptic plasticity involve modification of presynaptic strength in many brain regions. Although a presynaptic site for expression is well established, the detailed molecular mechanisms that lead to sustained changes in neurotransmitter release remain unclear. Here, we use acute in vivo genetic manipulation of synaptic proteins to investigate the molecular basis for presynaptic long-term potentiation (LTP) at hippocampal mossy fiber synapses. Munc13 proteins are active zone proteins that are essential for synaptic vesicle priming and neurotransmitter release. Munc13 proteins also interact with RIM1?, an active zone protein required for presynaptic long-term plasticity. By taking advantage of the observation that the RIM-binding domain of Munc13 is separable from the domain that is required for neurotransmitter release, we selectively tested whether Munc13-1 is an effector for RIM1? in presynaptic LTP. Our results provide the first evidence for the involvement of Munc13-1 in presynaptic long-term synaptic plasticity. We further demonstrate that the interaction between RIM1? and Munc13-1 is required for this plasticity. These results advance our understanding of the molecular mechanisms of presynaptic plasticity and suggest that modulation of vesicle priming may provide the cellular substrate for expression of LTP at mossy fiber synapses.

    View details for DOI 10.1523/JNEUROSCI.2276-11.2011

    View details for Web of Science ID 000293950300032

    View details for PubMedID 21849565

  • Acute In Vivo Genetic Rescue Demonstrates That Phosphorylation of RIM1 alpha Serine 413 Is Not Required for Mossy Fiber Long-Term Potentiation JOURNAL OF NEUROSCIENCE Yang, Y., Calakos, N. 2010; 30 (7): 2542-2546


    While presynaptic, protein kinase A (PKA)-dependent, long-term plasticity has been described in numerous brain regions, the target(s) of PKA and the molecular mechanisms leading to sustained changes in neurotransmitter release remain elusive. Here, we acutely reconstitute mossy fiber long-term potentiation (mfLTP) de novo in the mature brains of mutant mice that normally lack this form of plasticity. These results demonstrate that RIM1alpha, a presynaptic scaffold protein and a potential PKA target, can support mfLTP independent of a role in brain development. Using this approach, we study two mutations of RIM1alpha (S413A and V415P) and conclude that PKA-phosphorylation-dependent signaling by RIM1alpha serine 413 is not required for mfLTP, consistent with conclusions reached from the study of RIM1alpha S413A knockin mice. Together, these results provide insights into the mechanism of mossy fiber LTP and demonstrate a useful acute approach to genetically manipulate mossy fiber synapses in the mature brain.

    View details for DOI 10.1523/JNEUROSCI.4285-09.2010

    View details for Web of Science ID 000274599600017

    View details for PubMedID 20164339

Stanford Medicine Resources: